Changing the future of healthcare through regenerative medicine and drug discovery

“I am excited that we will be able to collaborate with CiRA, the world’s leading institute dedicated to pioneering iPS cell research. Through this partnership, our company will provide significant assistance over a long period to CiRA’s research into iPS cell technology applications, which is a vital part of Japan Revitalization Strategy. It is our hope to deliver innovative drugs and cell therapies that meet patient needs as soon as possible through this collaboration between Takeda and CiRA.”

“Christophe Weber
President & CEO, Takeda

“This 10-year joint program with Takeda, Japan’s largest pharmaceutical company, will become a powerful engine to realize medical applications using iPS cells. We sincerely thank Takeda’s commitment to iPS cell research. This partnership will contribute to the development of new therapies to cure not only major diseases but also rare ones.”

“Professor Shinya Yamanaka
Director of Center for iPS Cell Research and Application (CiRA), Kyoto University

Christophe Weber
President & CEO, Takeda

Professor Shinya Yamanaka
Director of Center for iPS Cell Research and Application (CiRA), Kyoto University
CiRA × Takeda = ∞

Combined strengths, high expectations

T-CiRA is a joint research program conducted by Takeda Pharmaceutical Company and Kyoto University’s Center for iPS Cell Research and Application (CiRA). Until now, the lack of bridges linking universities and pharmaceutical companies in Japan has deterred agile commercialization of the results from outstanding research conducted at universities. T-CiRA acts as a bridge across this so-called “Death Valley” of lost opportunity.

In Europe and the US, venture companies commercialize university research and pass it on to pharmaceutical companies. T-CiRA promises a smoother research-development-commercialization process through direct links between Takeda and the university. CiRA and Takeda are collaborating for 10 years on research into clinical applications for iPS cell technologies, aiming to develop innovative therapies through regenerative medicine and drug discovery for use in areas such as heart failure, diabetes mellitus, neuro-psychiatric disorders, cancer and intractable muscle diseases.

The roles of CiRA and Takeda

CiRA
- To direct the research program
- To provide iPS cell technologies
- To provide drug development targets and assay systems
- To provide principal investigators, researchers and postdoctoral fellows

Takeda
- To provide collaborative funding of 20 billion yen over a 10-year period
- To provide more than 12 billion yen worth of research support
- To provide R&D know-how
- To provide research facilities at Shonan Health Innovation Park
- To provide platforms for drug discovery
- To provide access to compound libraries
- To provide researchers

Concept behind the T-CiRA logo

The four colors of the logo symbolize the four genes used to induce the first ever iPS cells. They also represent the interaction among patients, researchers, clinicians and iPS cells. The red of the “T” is both CiRA’s image color and the symbol color of Takeda. The paper crane in the center of the emblem represents our hopes and prayers for patients. The tricolor circle embodies the importance of diversity as we work together to create innovative treatment options.

Booklet Concept

Just as iPS cells have the potential to become a variety of cell types and T-CiRA can shape our future of medication, a sheet of paper can take on many forms through origami, the art of paper folding.
We are committed to providing innovative treatments to patients through iPS cell technology. At T-CiRA, several novel research projects are underway for creating medical applications of iPS cells, led by nine principal investigators.

Dr. Kaneko’s team is trying to develop a novel cancer immunotherapy using iPSC-derived immune cells. We aspire to realize “off-the-shelf” allogeneic products for cancer patients by combining CiRA’s iPS Cell Stock for Regenerative Medicine with Takeda’s experience in drug production.

Dr. Kaneko’s team is trying to develop a novel clinical approach using iPSC-derived tolerogenic immune cells. We aspire to realize a transplantation tolerance which leads to well-functioning graft without immunosuppressive drugs in an immunocompetent host.

The T-cell receptor (TCR) gene that targets cancer cells is introduced into iPSCs derived from super donors, which can provide a match for a large population of patients.

T-cells are differentiated from iPSCs, mass-cultured and stocked using manufacturing methods industrialized and standardized.

The stockpiled T-cells can be administered to HLA-matched cancer patients and a marked therapeutic effect can be expected on cancers expressing the relevant antigen.

Concept
- iPSC-derived T-cells demonstrated in vitro tumor antigen-specific cytotoxicity against various types of cancer cell lines (A), the suppression of tumor metastasis (B) and tumor growth in mice.

Progress
- Treatment with iPSC-derived T-cell suppressed the tumor metastasis in mouse xenograft model, whereas metastasis was observed in 90% of control mice.

Immune Tolerance Project : Development of a novel immunological tolerance therapy in transplantation

Dr. Kaneko’s team is trying to develop a novel clinical approach using iPS-derived tolerogenic immune cells. We aspire to realize a transplantation tolerance which leads to well-functioning graft without immunosuppressive drugs in an immunocompetent host.

- Long-term graft survival
- Immunosuppressant free
Dr. Yoshida’s team aims to create iPSC-derived cardiomyocytes suitable for regenerative therapy and drug discovery research using new technologies such as microRNA-switch technology developed at CiRA. With these cardiomyocytes, they aim to develop cell therapies against heart failure alongside next-generation drug discovery platform and new therapeutic drugs.

Dr. Yoshida’s team is also trying to create iPSC-derived cardiomyocytes which are harboring the causal mutation for cardiomyopathy by genome editing. With these cardiomyocytes, they aim to develop new therapeutic drugs for genetic heart failure such as hypertrophic or dilated cardiomyopathy and catecholaminergic polymorphic ventricular tachycardia.

Human iPSCs are differentiated into cardiomyocytes (CMs), which are then matured.

- Subpopulations of cardiomyocytes, such as ventricular cardiomyocytes, are selectively acquired from iPSC-derived cells with varied characteristics using miRNA-switch and other techniques. These cells are used for cell therapy and compound screening.
Dr. Inoue’s team is conducting high-content and high-throughput screening of Takeda compounds with motor neurons differentiated from patient-derived iPSCs. The team identified “new drug candidates” which are effective against motor neuron loss of patient iPSC-derived neurons.

Concept/Strategy

Dr. Toyoda’s team is conducting research into cell therapy against type 1 diabetes mellitus involving transplants of iPSC-derived pancreatic cells. Their current research aims to develop new treatments based on the current limitations of such transplantation.

Progress

Dr. Toyoda’s team conducted high-content and high-throughput screening of Takeda compounds with motor neurons differentiated from patient-derived iPSCs. They identified “new drug candidates” which are effective against motor neuron loss of patient iPSC-derived neurons.

Research on Cell Project:

Dr. Inoue’s team is conducting research into amyotrophic lateral sclerosis (ALS), a neurodegenerative disease for which there is no effective cure. Their current research aims to develop new treatments based on the current limitations of such transplantation.

Progress

Dr. Inoue’s team conducted high-content and high-throughput screening of Takeda compounds with motor neurons differentiated from patient-derived iPSCs. The team identified “new drug candidates” which are effective against motor neuron loss of patient iPSC-derived neurons.

Concept/Strategy

Dr. Toyoda’s team is conducting research into cell therapy against type 1 diabetes mellitus involving transplants of iPSC-derived pancreatic cells. Their current research aims to develop new treatments based on the current limitations of such transplantation.

Progress

Dr. Toyoda’s team conducted high-content and high-throughput screening of Takeda compounds with motor neurons differentiated from patient-derived iPSCs. They identified “new drug candidates” which are effective against motor neuron loss of patient iPSC-derived neurons.

Research on Cell Project:

Dr. Inoue’s team is conducting research into amyotrophic lateral sclerosis (ALS), a neurodegenerative disease for which there is no effective cure. Their current research aims to develop new treatments based on the current limitations of such transplantation.

Progress

Dr. Inoue’s team conducted high-content and high-throughput screening of Takeda compounds with motor neurons differentiated from patient-derived iPSCs. The team identified “new drug candidates” which are effective against motor neuron loss of patient iPSC-derived neurons.
When patient-derived iPS cells, which harbor a genetic mutation in the dystrophin gene, are differentiated into skeletal muscle cells, dystrophin protein expression is absent. By using genome editing technology to skip exons that carry a genetic mutation, it is possible to rescue the expression of dystrophin protein that retains some degree of functionality.

Dr. Sakurai’s team will create novel therapeutic drugs for intractable muscular diseases such as Miyoshi myopathy and Duchenne muscular dystrophy and investigate muscular disease models. To achieve this goal, they utilize patient-derived iPSCs as a tool for disease modeling and drug screening.

Dr. Hotta’s team aims to correct the causal genetic mutations involved in severe muscular dystrophy using state-of-the-art genome editing and delivery technologies. The team aims to develop technology that will enable them to create new gene therapies while, at the same time, confirming repair efficiency and safety using patient-derived iPSC cells.
Neural crest cells are a unique cell population that exists only in the early stages of development. However, much about them remains unknown. It is very difficult to culture neural crest cells in vitro while maintaining their undifferentiated state. But if basic technologies to maintain neural crest cells are established using human iPSCs, the application possibilities are extensive.

Neural crest cells (NCCs) differentiate into diverse cell type lineages such as bones and peripheral neurons, suggesting their great potential for clinical applications. Dr. Ikeya’s team aims to create methods to maintain and culture human iPSC-derived NCCs and to induce them to differentiate into various types of cells. Moreover, they hope to construct an in vitro disease model in combination with related technologies and apply it to drug development and regenerative medicine.

Organoid Medicine Project: A new research platform with human iPSC-derived neural crest cells and its applications for drug discovery and regenerative medicine

Genomic information is used for the strategy to create iPSCs that allows the team to establish a method of screening donors that could be useful for predicting the phenotype of rare diseases. Furthermore, by creating a mini-liver consisting of multiple types of cells, the team will construct a method to reproduce complex patient pathology in vitro. By integrating these two proprietary methods of genome research and cellome research, the team will contribute to the creation of an innovative drug discovery system.

Organoid Medicine Project: Miniature liver technology as a platform for research towards pharmaceutical applications

Based on human iPSC-derived miniature liver technology developed at Yokohama City University, Dr. Takebe’s team is developing an innovative system that can reproduce the complex phenomena found in patients’ bodies. This research will create a novel drug discovery system for intractable diseases and a novel predictive platform for expression analysis of rare adverse events unforeseen in traditional drug discovery research.

Neural crest cells are a unique cell population that exists only in the early stages of development. However, much about them remains unknown.

It is very difficult to culture neural crest cells in vitro while maintaining their undifferentiated state. But if basic technologies to maintain neural crest cells are established using human iPSCs, the application possibilities are extensive.

<Concept/Strategy>

Based on human iPSC-derived miniature liver technology developed at Yokohama City University, Dr. Takebe’s team is developing an innovative system that can reproduce the complex phenomena found in patients’ bodies. This research will create a novel drug discovery system for intractable diseases and a novel predictive platform for expression analysis of rare adverse events unforeseen in traditional drug discovery research.

<Concept/Strategy>

Genomic information is used for the strategy to create iPSCs that allows the team to establish a method of screening donors that could be useful for predicting the phenotype of rare diseases. Furthermore, by creating a mini-liver consisting of multiple types of cells, the team will construct a method to reproduce complex patient pathology in vitro. By integrating these two proprietary methods of genome research and cellome research, the team will contribute to the creation of an innovative drug discovery system.

<Progress>

The team identified multiple differentiation protocols to induce various cell types from NCCs. The differentiated functional cells will be used for development of drug discovery and cell therapy platform.
Giving shape to hopes – with agility

The T-CiRA research laboratory has been established at the Shonan Health Innovation Park as a branch of CiRA. Here, over 100 researchers from CiRA, Yokohama City University, RIKEN and Takeda work together using iPS cell technologies.

The lab features the latest equipment and resources, creating a one-stop research environment that begins with fundamental research and culminates in research for clinical trials.

Cutting-edge technology leads our center for drug creation

Dr. Suzuki’s team is focusing on a deficiency in the NGLY1 gene that encodes for the de-N-glycosylating enzyme N-glycanase. They will develop innovative therapeutics for NGLY1 deficiency, a rare inherited disease that presently does not have any therapeutic options, through a combination of basic research findings, iPSC technology and a drug discovery platform.

Recent data suggested abnormalities in brain organoid developed from patient-derived iPSCs:
- Many large neural tissues that have greatly expanded in wild type brain organoids but not in NGLY1-deficiency organoids (day 20).
- NGLY1-deficiency organoid which has failed to produce neuroepithelial buds, instead displaying extended cell processes consistent with direct neural differentiation.

Key Research Platform

NGLY1 Deficiency Project: Development of therapeutic agents for rare hereditary diseases using iPSCs

Clinical information

<Concept/Strategy>

Dr. Suzuki’s team is focusing on a deficiency in the NGLY1 gene that encodes for the de-N-glycosylating enzyme N-glycanase. They will develop innovative therapeutics for NGLY1 deficiency, a rare inherited disease that presently does not have any therapeutic options, through a combination of basic research findings, iPSC technology and a drug discovery platform.

<Progress>

Recent data suggested abnormalities in brain organoid developed from patient-derived iPSCs:
- Many large neural tissues that have greatly expanded in wild type brain organoids but not in NGLY1-deficiency organoids (day 20).
- NGLY1-deficiency organoid which has failed to produce neuroepithelial buds, instead displaying extended cell processes consistent with direct neural differentiation.

1. Shonan Health Innovation Park (iPark), Kanagawa, Japan
2. The latest in state-of-the-art high-content screening devices, allowing for simultaneous high-resolution photography across four wavelengths
3. High-throughput screening devices to unearth seeds for drug discovery from compound libraries
4. A clean bench where researchers from CiRA and Takeda work side by side
Together with our partners, towards the future of drug discovery

(T-CiRA Retreat) In order to foster a sense of unity among those engaged in our T-CiRA research activities, a total of 160 T-CiRA researchers and T-CiRA support members came together at the T-CiRA Retreat.

A morning run with Prof. Yamanaka took place. We shared our desire with him to complete the long road to applying iPS cell research to drug discovery.

(T-CiRA Monthly Meeting) Every month, Prof. Yamanaka visits the Shonan Health Innovation Park and participates in the T-CiRA monthly meeting. At the meeting, a serious discussion takes place on individual project plans and their progress, in order to accelerate research towards realization of therapies using iPS cells.

The participating researchers gave oral and poster presentations and deepened their understanding of mutual projects through spirited discussions.

(Articles and programs on T-CiRA)

<table>
<thead>
<tr>
<th>Printing / Broadcast Date</th>
<th>Printing / Broadcasting Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 25, 2016</td>
<td>Yomiuri Shimbun</td>
</tr>
<tr>
<td>March 5, 2016</td>
<td>Yomiuri Shimbun</td>
</tr>
<tr>
<td>June 11, 2016</td>
<td>Diamond Weekly</td>
</tr>
<tr>
<td>August 25, 2016</td>
<td>Mainichi Shimbun</td>
</tr>
<tr>
<td>October 24, 2016</td>
<td>Kansai Joho Netto ten.</td>
</tr>
<tr>
<td></td>
<td>(Yomiuri Television)</td>
</tr>
<tr>
<td>October 27, 2016</td>
<td>The Chemical Daily</td>
</tr>
<tr>
<td>January 2, 2017</td>
<td>Nikkei Biotech ONLINE</td>
</tr>
<tr>
<td>February 14, 2017</td>
<td>Nikkan Kogyo Shimbun</td>
</tr>
</tbody>
</table>

The participating researchers gave oral and poster presentations and deepened their understanding of mutual projects through spirited discussions.

Printing / Broadcast Date	Printing / Broadcasting Program
February 21, 2017 | Nikkan Kogyo Shimbun |
February 21, 2017 | The Chemical Daily |
March 15, 2017 | Kyoto Shimbun |
April 13, 2017 | The Cambrian Palace (TV Tokyo series) |
Sep 11, 2017 | The Professional (NHK series) |
Nov 20, 2017 | Asahi Shimbun |
Jan 2, 2018 | Nikkei Biotech ONLINE |
A brighter future for patients through innovative new treatment options

A History of Stem Cell Research at Takeda

2006 Stem cell research began on somatic stem cells and mouse ES cells.
2008 IPS cell research began with a focus on neuronal differentiation, pancreatic β cell differentiation and cardiomyocyte differentiation.
 Prof. Shinya Yamanaka provided two kinds of human iPS cell clones to Takeda.
2010 Takeda participated in the Advanced Medical Development Project (a Japan’s National project) led by Prof. Shinya Yamanaka: “Project to Accelerate Medical Applications of iPS Cells”.
2011 Disease-specific iPS cells were introduced and fundamental research on regenerative medicine began.
 Takeda conducted joint research with Prof. Haruhisa Inoue of CiRA on iPS cells derived from patients with Alzheimer’s disease and ALS.
2012 Takeda conducted joint research with Prof. Kenji Osafune of CiRA on insulin-producing cells derived from iPS cells.
2013 Various differentiated cells and human disease models created.
2014 Takeda participated in the National project “Application of disease-specific iPS cells for intractable diseases”.
2015 T-CiRA Joint Program for iPS Cell Applications began.

A History of iPS Cell Research at CiRA

2006 Prof. Shinya Yamanaka published establishment of mouse iPS cells.
2007 Prof. Shinya Yamanaka published establishment of human iPS cells.
2008 Creation of disease-specific iPS cells began.
 Initial patent granted in Japan for creation of iPS cells.
2010 The Center for iPS Cell Research and Application, Kyoto University, was established.
2011 Division for iPS Cell Application Development established at Kyoto University Hospital.
 Patents obtained in the US and Europe for creation of iPS cells.
2012 Prof. Shinya Yamanaka was awarded the Nobel Prize in Physiology or Medicine.
2014 RIKEN’s Masayo Takahashi led a clinical research using human IPS cells, during which a transplant surgery was conducted.
2015 Shipment of IPS cell stock for regenerative medicine began.
 T-CiRA Joint Program for iPS Cell Applications began.

A Nobel Prize was only the beginning

A History of iPS Cell Research at CiRA

2006 Prof. Shinya Yamanaka published establishment of mouse iPS cells.
2007 Prof. Shinya Yamanaka published establishment of human iPS cells.
2008 Creation of disease-specific iPS cells began.
 Initial patent granted in Japan for creation of iPS cells.
2010 The Center for iPS Cell Research and Application, Kyoto University, was established.
2011 Division for iPS Cell Application Development established at Kyoto University Hospital.
 Patents obtained in the US and Europe for creation of iPS cells.
2012 Prof. Shinya Yamanaka was awarded the Nobel Prize in Physiology or Medicine.
2014 RIKEN’s Masayo Takahashi led a clinical research using human IPS cells, during which a transplant surgery was conducted.
2015 Shipment of IPS cell stock for regenerative medicine began.
 T-CiRA Joint Program for iPS Cell Applications began.
2025 – The year new therapies will become reality

University and Pharmaceutical working hand in hand - to solve unprecedented challenges.

T-CiRA takes a novel approach toward treatments for patients who were previously without effective therapeutic options. Our projects are progressing rapidly, using the power of IPS cells, to formulate new therapeutic options. Working closely together, university and pharmaceutical industry researchers are mapping uncharted territory to discover innovative solutions. Take the case of Amyotrophic Lateral Sclerosis (ALS), a fatal neurodegenerative disease. If our drug screening for this disease succeeds, the nerve degeneration that causes the disease could be halted entirely. Similarly, if a project to create insulin-secreting pancreatic β cells succeeds, patients suffering from diabetes mellitus may no longer need insulin injections. Our dream is that patients will receive therapeutic options discovered directly through our 10-year collaborative research effort.

Delivering innovative therapeutic options to our patients, as soon as possible. That’s our mission, every day.

T-CiRA is constantly evolving. Please visit our website to track our exciting journey.

Reprogramming the Future

http://t-cira.takeda.com/t-cira/