A CURATIVE-INTENT IMMUNO-ONCOLOGY PIPELINE IS TAKING SHAPE

WAVE 1
NMEs that complement our global brands

- **Hematologic Malignancies**
 - TAK-924
 - FY21 target approval
 - TAK-007
 - FY23 target approval
 - TAK-788
 - FY21 target approval

- **Lung Cancer & Solid Tumors**

WAVE 2
Leading platforms in immuno-oncology and cell therapies
PARTNERSHIPS DRIVE OUR DIFFERENTIATED EARLY CLINICAL PIPELINE

Unique Partnership Model

• Innovative, disruptive platforms
• Agility in ‘open lab’ model

Differentiated Portfolio

• Harness innate immunity
• Eye towards solid tumors

THE FIRST BREAKTHROUGHS IN CANCER IMMUNOTHERAPY
TARGET T CELLS

T CELL CHECKPOINT INHIBITORS

PD-1
CTLA-4

FIRST-GEN CAR-Ts

Adapted from Chen & Mellman, Immunity 2013
OUR FOCUS IS ON NOVEL MECHANISMS IN THE CANCER-IMMUNITY CYCLE

1. **Innate immunomodulation**
 - Novel-scaffold immune checkpoint platforms
 - Next-gen cell therapy & immune engager platforms

2. Cancer cell death
 - SUMOylation MECHANISM-OF-ACTION PROGRAMS
 - Attenukine™ PARTNER

3. Phonetic reading: = first-in-class

EMERGING STRENGTH IN TARGETED INNATE IMMUNE MODULATION

HIGH UNMET NEED
- Patients refractory/ unresponsive to current immunotherapies

OUR DIFFERENTIATED APPROACH
- Systemic therapies leveraging innate immunity to enhance response breadth, depth & durability

<table>
<thead>
<tr>
<th>PLATFORM</th>
<th>PARTNER</th>
<th>MECHANISM-OF-ACTION</th>
<th>PROGRAMS</th>
<th>PRE-CLINICAL</th>
<th>PH 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>STING agonism</td>
<td>CURADEV</td>
<td>Innate-to-adaptive priming</td>
<td>TAK-676 (STING agonist)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Targeted STING agonist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUMOylation</td>
<td></td>
<td>Innate immune enhancer</td>
<td>TAK-981</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TAK-981 (ADCC combo)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attenukine™</td>
<td>teva</td>
<td>Targeted attenuated IFN-α</td>
<td>TAK-573 (CD38-Attenukine™)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Next-gen Attenukine™</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADCC = Antibody-dependent cellular cytotoxicity
1. **ATTENUKINE™ PLATFORM ELICITS BOTH DIRECT TUMOR KILL AND IMMUNE ACTIVATION**

TARGETED ATTENUATED TYPE I IFN PAYLOAD

TAK-573
- Binds CD38
- Human IgG4 Fc
- Attenuated IFNα2b

Immunomodulation in preclinical models
Includes CD8+ T cell migration / activation

NEXT-GEN ATTENUKINE™
- Binds innate immune target
- Attenuated IFNα2b

TAK-573 POM IN ONGOING PHASE 1 R/R MM STUDY

- Activation of CD8+ T cells in bone marrow
 - Baseline: 7.3%
 - Cycle 1 Day 16: 18.4%
 - Cycle 2 Day 2: 28.8%

EXPECTED MILESTONES (FY)
- 2019: Ph1 FPI in solid tumors
- 2020: Ph1b MM (incl. combinations)

FPI = first patient in
R/R MM = Relapsed / refractory multiple myeloma
POM = proof-of-mechanism

2. **NOVEL SCAFFOLD NEXT-GENERATION CHECKPOINT MODULATORS**

HIGH UNMET NEED
Current checkpoint modulators fail to improve overall survival in majority of patients

OUR DIFFERENTIATED APPROACH
New classes of checkpoint inhibitors designed to increase breadth and depth of responses

PLATFORM	**PARTNER**	**MECHANISM-OF-ACTION**	**PROGRAMS**	**PRE-CLINICAL**	**PH 1**
Humbody Vh	Crescendo Biosciences	• Unique pharmacology	Concept 1		
			Concept 2		
Agonist-directed checkpoints	Shattuck Biopharma	• Co-inhibition & co-stimulation	TAK-252 / SL-279352 (PD1-Fc-OX40L)		
			TAK-254 / SL-115154 (CSF1R-Fc-CD40L)		

Vh = Variable heavy domain

= first-in-class
BRINGING 5 NOVEL CELL THERAPY PLATFORMS TO THE CLINIC BY THE END OF FY20

HIGH UNMET NEED
Current CAR-T therapies have significant challenges & fail to address solid tumors

OUR DIFFERENTIATED APPROACH
Leverage novel cell platforms & engineering to address shortcomings in liquid & solid tumors

INNATE IMMUNE PLATFORMS
- Multiple mechanisms of tumor killing
- ‘Off-the-shelf’
- Utility in solid tumors

NK & γδT cells
Innate tumor sensors & effectors
Engineered CAR
Fc-mediated killing

A NETWORK OF TOP INNOVATORS IS FUELING TAKEDA’S CELL THERAPY ENGINE

CUTTING-EDGE ENGINEERING & CELL PLATFORMS

IPSC expertise
γδT cell platform
Armored CAR-Ts
Next-gen CARs
IPSC CAR-Ts
CAR-NK platform

2016 2017 2018 2019

Takeda Cell Therapy Translational Engine
First Development-Stage Partnership

IPSC = Induced pluripotent stem cell NK = Natural killer

Dr. Sadelain is a co-inventor on patents relative to next-gen CARs, intellectual property that MSK has licensed to Takeda. As a result of these licensing arrangements, Dr. Sadelain and MSK have financial interests related to these research efforts.
TAKEDA IS EMBARKING ON A TRANSFORMATIVE CAR-NK PARTNERSHIP THAT COULD ENTER PIVOTAL TRIALS IN 2021

NK CAR Platform
- Multiple mechanisms of tumor killing
- Potentiation of innate & adaptive immunity

![Cancer cell diagram](#)

PLATFORM VALUE INFLECTIONS

FOUR NOVEL, OFF-THE-SHELF CAR-NK THERAPIES IN DEVELOPMENT

<table>
<thead>
<tr>
<th>PATIENT VALUE PROPOSITION</th>
<th>PLATFORM VALUE INFLECTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid and deep responses with a short-time-to-treatment, safe, off-the-shelf CAR-NK available in outpatient & community settings</td>
<td>FY</td>
</tr>
<tr>
<td>Initial opportunity in G7 countries (CD19)*</td>
<td>2H 2020</td>
</tr>
<tr>
<td>3L+ DLBCL</td>
<td>~8,000</td>
</tr>
<tr>
<td>3L+ CLL</td>
<td>~5,000</td>
</tr>
<tr>
<td>3L+ iNHL</td>
<td>~6,000</td>
</tr>
<tr>
<td>Potential to move into earlier lines of therapy</td>
<td>2021</td>
</tr>
<tr>
<td>Ongoing maturation of clinical data: Efficacious dose, durability, partial vs. full allo, cryopreserved product</td>
<td>2023</td>
</tr>
<tr>
<td>Manufacturing process complete</td>
<td>BLA filing</td>
</tr>
<tr>
<td>Pivotal trials in r/r DLBCL / CLL / Indolent NHL</td>
<td></td>
</tr>
<tr>
<td>BLA filing</td>
<td></td>
</tr>
</tbody>
</table>

PLATFROM VALUE INFLECTIONS

<table>
<thead>
<tr>
<th>CAR-NK (allo cord blood)</th>
<th>MD Anderson Cancer Center</th>
<th>Dr. Katy Rezvani</th>
<th>Non-autologous NK cell therapy</th>
<th>TAK-007 (CD19 CAR-NK)</th>
<th>BCMA CAR-NK</th>
<th>Platform expansion</th>
</tr>
</thead>
</table>

CLL = Chronic lymphocytic leukemia DLBCL = Diffuse large B-cell lymphoma iNHL = Indolent non-Hodgkin’s lymphoma

*Estimated number of patients projected to be initially eligible for treatment in G7 markets, subject to regulatory approval

*first-in-class
DRAMATIC COMPLETE RESPONSE IN FIRST PATIENT TREATED

47-YEAR OLD MALE WITH RELAPSED TRANSFORMED DOUBLE-HIT (C-MYC / BCL-2) DLBCL

Baseline scan
Day 30 post CAR19-NK

Data from Dr. Katy Rezvani, MD Anderson Cancer Center

KINETICS OF CAR-NK VERSUS ENDOGENOUS T AND B CELLS IN PERIPHERAL BLOOD

![Graph showing time vs. percentage of CAR-NK, T, and B cells](image)

IMPRESSIVE RESPONSES IN OTHER HEAVILY PRETREATED PATIENTS

61-YEAR OLD MALE CLL/RICHTER’S TRANSFORMATION (5 PRIOR LINES OF THERAPY)

Baseline scan
Day 30 post CAR19-NK

CR in Richter’s; SD in CLL

Data from Dr. Katy Rezvani, MD Anderson Cancer Center

60-YEAR OLD FEMALE WITH CLL / ACCELERATED CLL (5 PRIOR LINES OF THERAPY)

Baseline scan
Day 30 post CAR19-NK

CR in Richter’s; SD in CLL

Data from Dr. Katy Rezvani, MD Anderson Cancer Center
CAR-NK EFFICACY & TOXICITY TREATING MULTIPLE DIAGNOSES

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Lines of Treatment</th>
<th>HLA Match</th>
<th>CRS / neurotox</th>
<th>Complete Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose Level 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLBCL - Relapsed transformed double-hit</td>
<td>3 Incl. ASCT</td>
<td>Partial match</td>
<td>None</td>
<td>✓</td>
</tr>
<tr>
<td>DLBCL - Refractory</td>
<td>7</td>
<td>Partial match</td>
<td>None</td>
<td>PD</td>
</tr>
<tr>
<td>CLL</td>
<td>4 Incl. ibrutinib & venetoclax</td>
<td>Partial match</td>
<td>None</td>
<td>✓</td>
</tr>
<tr>
<td>Dose Level 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLL</td>
<td>4 Incl. ibrutinib</td>
<td>Partial match</td>
<td>None</td>
<td>PD</td>
</tr>
<tr>
<td>CLL/Richter’s transformation</td>
<td>5 Incl. ibrutinib</td>
<td>Partial match</td>
<td>None</td>
<td>✓* Richter’s</td>
</tr>
<tr>
<td>CLL/Accelerated CLL</td>
<td>5 Incl. ibrutinib & venetoclax</td>
<td>Partial match</td>
<td>None</td>
<td>✓</td>
</tr>
<tr>
<td>CLL</td>
<td>4 Incl. ibrutinib</td>
<td>Partial match</td>
<td>None</td>
<td>✓</td>
</tr>
<tr>
<td>Dose Level 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLBCL - Refractory</td>
<td>11 Incl. ASCT</td>
<td>Partial match</td>
<td>None</td>
<td>✓</td>
</tr>
<tr>
<td>DLBCL - Relapsed transformed double-hit</td>
<td>4 Incl. ASCT</td>
<td>Partial match</td>
<td>None</td>
<td>✓</td>
</tr>
<tr>
<td>Follicular lymphoma - Relapsed</td>
<td>4 Incl. ASCT</td>
<td>Mismatch</td>
<td>None</td>
<td>PD</td>
</tr>
<tr>
<td>Follicular lymphoma - Relapsed</td>
<td>4 Mismatch</td>
<td>None</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

CLL = Chronic lymphocytic leukemia
CRS = Cytokine release syndrome
DLBCL = Diffuse large B-cell lymphoma
ASCT = Autologous stem cell transplant
HLA = Human leukocyte antigen
PD = Progressive disease
*Complete response for Richter’s

Data from Dr. Katy Rezvani, MD Anderson Cancer Center
FAST-TO-CLINIC CELL THERAPY ENGINE WILL MAXIMIZE LEARNINGS ON MULTIPLE ‘DISRUPTIVE’ PLATFORMS

5 CLINICAL-_STAGE PROGRAMS EXPECTED BY END OF FY20

FY19

FY20

FY21+: Other cell therapy candidates

TAK-007

Off-the-shelf CAR-NK product

TAK-102

Cytokine + chemokine armed CAR-T

CD19 1XX-CAR-T

Next-gen CART signaling domain

GDX012

Gamma-delta T cells

GCC CAR-T

Colorectal Cancer

5 CLINICAL-_STAGE PROGRAMS EXPECTED BY END OF FY20

TAK-007

MD Anderson Cancer Center

TAK-102

NOILE-IMMUNE BIOTECH

CD19 1XX-CAR-T

Memorial Sloan Kettering Cancer Center

GDX012

GAMMADELTA THERAPEUTICS

GCC CAR-T

Takeda

A RICH AND POTENTIALLY TRANSFORMATIVE EARLY CLINICAL ONCOLOGY PIPELINE

PLAT FORM

PARTNER(S)

MECHANISM-OF-ACTION

PROGRAMS

PRECLINICAL

PH1

STING agonism

CURADEV

• Innate-to-adaptive priming

TAK-676 (STING agonist)

Targeted STING agonist

SUMOylation

• Innate immune enhancer

TAK-981

TAK-981 (ADCC combo)

Attenukine™

teva

• Targeted attenuated IFN-α

TAK-573 (CD38-Attenukine™)

Agnost-directed checkpoints

SHATTUCK

Co-inhibition & co-stimulation

TAK-252 / SL-279353

TAK-254 / SL-115154

Shiga-like toxin A

tem

Novel cytotoxic payload

TAK-169 (CD38-SLTA)

IGN toxin

immunogen

Solid tumor-targeted ADC

TAK-164 (GCC-ADC)

Conditional T cell engagers

MAVERICK

Novel solid tumor platform

MVC-101 (EGFR COBRA™)

Cell therapy platforms

GAMMADELTA

Off-the-shelf cell therapies

TAK-007 (CD19 CAR-NK)

5 cell therapies expected in clinic by end of FY20

= first-in-class
NME MILESTONES ACHIEVED IN FY19 AND LOOKING AHEAD TO OTHER POTENTIAL MILESTONES¹ THROUGH FY20

PIVOTAL STUDY STARTS, APPROVALS

1. Potential key milestone dates as of November 14, 2019. The dates included herein are estimates based on current data and are subject to change.
2. Potentially registration enabling

SUMMARY

1. Total transformation of preclinical & early clinical pipeline
2. Differentiated opportunities in IO leveraging innate immunity & cell therapies
3. Multiple near-term catalysts informing momentum towards solid tumors

KEY DATA READOUTS

- Denotes milestones that have been achieved.
R&D Day Agenda – New York, November 14, 2019

<table>
<thead>
<tr>
<th>TIME</th>
<th>AGENDA</th>
</tr>
</thead>
</table>
| 12:30 – 12:35 | Welcome and Opening Remarks
Sheelagh Cowley-Knopf, Head R&D Global Portfolio Strategy |
| 12:35 – 12:45 | Takeda: A Global Values-Based, R&D-Driven Biopharmaceutical Leader
Christophe Weber, President & CEO Takeda |
| 12:45 – 13:20 | Translating Science into Highly Innovative, Life-changing Medicines
Andy Plump, President R&D |
| 13:20 – 13:45 | Oncology and Cell Therapies with Spotlight on CAR-NK
Chris Arendt, Head Oncology Drug Discovery Unit |
| 13:45 – 14:05 | Spotlight on Oncology Opportunities
• TAK-788: Rachael Brake, Global Program Lead
• Pevonedistat: Phil Rowlands, Head Oncology Therapeutic Area Unit |
| 14:05 – 14:20 | Break |
| 14:20 – 14:45 | Rare Diseases & Gene Therapy
Dan Curran, Head Rare Disease Therapeutic Area Unit |
| 14:45 – 15:00 | Spotlight on Orexin2R agonists
Deborah Hartman, Global Program Lead |
| 15:00 – 15:20 | Therapeutic Area Focus in GI with Spotlight on Celiac Disease
Asit Parikh, Head GI Therapeutic Area Unit |
| 15:20 – 16:00 | Panel Q&A Session |
| 16:00 | Drinks reception |